Ultra-fast FFT protein docking on graphics processors

نویسندگان

  • David W. Ritchie
  • Vishwesh Venkatraman
چکیده

MOTIVATION Modelling protein-protein interactions (PPIs) is an increasingly important aspect of structural bioinformatics. However, predicting PPIs using in silico docking techniques is computationally very expensive. Developing very fast protein docking tools will be useful for studying large-scale PPI networks, and could contribute to the rational design of new drugs. RESULTS The Hex spherical polar Fourier protein docking algorithm has been implemented on Nvidia graphics processor units (GPUs). On a GTX 285 GPU, an exhaustive and densely sampled 6D docking search can be calculated in just 15 s using multiple 1D fast Fourier transforms (FFTs). This represents a 45-fold speed-up over the corresponding calculation on a single CPU, being at least two orders of magnitude times faster than a similar CPU calculation using ZDOCK 3.0.1, and estimated to be at least three orders of magnitude faster than the GPU-accelerated version of PIPER on comparable hardware. Hence, for the first time, exhaustive FFT-based protein docking calculations may now be performed in a matter of seconds on a contemporary GPU. Three-dimensional Hex FFT correlations are also accelerated by the GPU, but the speed-up factor of only 2.5 is much less than that obtained with 1D FFTs. Thus, the Hex algorithm appears to be especially well suited to exploit GPUs compared to conventional 3D FFT docking approaches. AVAILABILITY http://hex.loria.fr/ and http://hexserver.loria.fr/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HexServer: an FFT-based protein docking server powered by graphics processors

HexServer (http://hexserver.loria.fr/) is the first Fourier transform (FFT)-based protein docking server to be powered by graphics processors. Using two graphics processors simultaneously, a typical 6D docking run takes approximately 15 s, which is up to two orders of magnitude faster than conventional FFT-based docking approaches using comparable resolution and scoring functions. The server re...

متن کامل

Fast FFT Protein-Protein Docking on Graphics Processors

A limiting factor in predicting protein-protein interactions using computational docking approaches has been the computational cost of searching exhaustively the 6D rigid-body search space[1,2]. Many numerically intensive scientific calculations have been implemented on Graphical Processing Units (GPUs) to give significant speed-ups compared to conventional CPU-based calculations. Here, we repo...

متن کامل

Using Graphics Processors to Accelerate Protein Docking Calculations

Protein docking is the computationally intensive task of calculating the three-dimensional structure of a protein complex starting from the individual structures of the constituent proteins. In order to make the calculation tractable, most docking algorithms begin by assuming that the structures to be docked are rigid. This article describes some recent developments we have made to adapt our FF...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

The nonequispaced FFT on graphics processing units

Without doubt, the fast Fourier transform (FFT) belongs to the algorithms with large impact on science and engineering. By appropriate approximations, this scheme has been generalized for arbitrary spatial sampling points. This so called nonequispaced FFT is the core of the sequential NFFT3 library and we discuss its computational costs in detail. On the other hand, programmable graphics proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 26 19  شماره 

صفحات  -

تاریخ انتشار 2010